A Novel Mammal-Specific Three Partite Enhancer Element Regulates Node and Notochord-Specific Noto Expression
نویسندگان
چکیده
The vertebrate organizer and notochord have conserved, essential functions for embryonic development and patterning. The restricted expression of developmental regulators in these tissues is directed by specific cis-regulatory modules (CRMs) whose sequence conservation varies considerably. Some CRMs have been conserved throughout vertebrates and likely represent ancestral regulatory networks, while others have diverged beyond recognition but still function over a wide evolutionary range. Here we identify and characterize a mammalian-specific CRM required for node and notochord specific (NNC) expression of NOTO, a transcription factor essential for node morphogenesis, nodal cilia movement and establishment of laterality in mouse. A 523 bp enhancer region (NOCE) upstream the Noto promoter was necessary and sufficient for NNC expression from the endogenous Noto locus. Three subregions in NOCE together mediated full activity in vivo. Binding sites for known transcription factors in NOCE were functional in vitro but dispensable for NOCE activity in vivo. A FOXA2 site in combination with a novel motif was necessary for NOCE activity in vivo. Strikingly, syntenic regions in non-mammalian vertebrates showed no recognizable sequence similarities. In contrast to its activity in mouse NOCE did not drive NNC expression in transgenic fish. NOCE represents a novel, mammal-specific CRM required for the highly restricted Noto expression in the node and nascent notochord and thus regulates normal node development and function.
منابع مشابه
The mouse homeobox gene Noto regulates node morphogenesis, notochordal ciliogenesis, and left right patterning.
The mouse homeobox gene Noto represents the homologue of zebrafish floating head (flh) and is expressed in the organizer node and in the nascent notochord. Previous analyses suggested that Noto is required exclusively for the formation of the caudal part of the notochord. Here, we show that Noto is also essential for node morphogenesis, controlling ciliogenesis in the posterior notochord, and t...
متن کاملTracing notochord-derived cells using a Noto-cre mouse: implications for intervertebral disc development
Back pain related to intervertebral disc degeneration is the most common musculoskeletal problem, with a lifetime prevalence of 82%. The lack of effective treatment for this widespread problem is directly related to our limited understanding of disc development, maintenance and degeneration. The aim of this study was to determine the developmental origins of nucleus pulposus cells within the in...
متن کاملWnt signaling maintains the notochord fate for progenitor cells and supports the posterior extension of the notochord
The notochord develops from notochord progenitor cells (NPCs) and functions as a major signaling center to regulate trunk and tail development. NPCs are initially specified in the node by Wnt and Nodal signals at the gastrula stage. However, the underlying mechanism that maintains the NPCs throughout embryogenesis to contribute to the posterior extension of the notochord remains unclear. Here, ...
متن کاملTead proteins activate the Foxa2 enhancer in the node in cooperation with a second factor.
The cell population and the activity of the organizer change during the course of development. We addressed the mechanism of mouse node development via an analysis of the node/notochord enhancer (NE) of Foxa2. We first identified the core element (CE) of the enhancer, which in multimeric form drives gene expression in the node. The CE was activated in Wnt/beta-catenin-treated P19 cells with a t...
متن کاملIdentification of essential sequence motifs in the node/notochord enhancer of Foxa2 (Hnf3β) gene that are conserved across vertebrate species
The expression of a winged-helix transcription factor, Foxa2/HNF3beta, is essential for development of the node and the notochord. We examined the node/notochord enhancer of mouse Foxa2 for sequence motifs conserved across vertebrate species. We cloned Foxa2 genes from chicken and fish, and identified the respective node/notochord enhancers that were active in transgenic mouse embryos. Comparis...
متن کامل